cb_3377.html" cb_3378.html"

Click on sexy hot, beautiful women's photo and choose any woman or click here to go to the Computer Brides Site


Tele Medical Health Hipaa Dicom HL7 Pacs.Com, Inc. Information Technology Documentation

Return To Telemedical HOME Page

Return To Telemedical Network Information Technology Documentation Table of Contents




Go to Home Page

Go to Section 2

Go to Proposal Section 3

Go to Proposal Appendix A

You are on the Modern Graphics Proposal Appendix B

Go to Proposal Appendix C

Broadband transmission differs from baseband transmission in the direction of signal flow. With baseband transmission (10Base5 and 10Base2), signal flow is bidirectional. The signal flows in both directions away from the transmitting station. With broadband transmission, signal flow is unidirectional. The signal moves in only one direction along the cable. In order for signals to reach all the devices in the network, there must be two paths for data flow. This may be accomplished through either a "single cable" or "dual cable" configuration.

In a single cable configuration, the cable carries transmissions over two channels, each using a different frequency range. One channel is used to transmit signals, and the other is used to receive. When a signal is transmitted, it travels to the end of the cable where the head end device is located. The head end includes a frequency converter that changes the frequency of the signal and re-transmits it in the opposite direction along the same cable. The signal is then received by all devices on the cable.

In a dual cable configuration, each station is attached to two cables. One cable is used to send, and the other is used to receive. When a signal is transmitted, it reaches the head end where it is passed via a a connector to the other cable without any change in frequency. The signal can then be received as it passes along the second cable.

When introduced, 10Broad36 offered the advantage of supporting much longer segment lengths than 10Base5 and 10Base2. But this advantage was diminished with introduction of the fiber based FOIRL and 10Base-F standards. 10Broad36 is not capable of supporting the full-duplex mode of operation.

10Broad36 Facts

Transmission Rate

10 Mb/s (full-duplex not supported)

Cable Type

single 75-ohm CATV broadband cable

Maximum Segment Length

1800 meters (5905 feet)

Maximum Total Span (Multiple Segments)

3600 meters (11811 feet)

Signal Encoding

modulated radio frequency (RF)

4.2.5 FOIRL

Fiber Optic Inter-Repeater Link (FOIRL) supports a 10 Mb/s transmission rate over two fiber optic cables. It was designed to provide a relatively long distance point-to-point connection between two repeaters. The FOIRL standard was originally released in 1987. In 1993, the 10Base-FL ("fiber link") standard was released which updated and expanded the FOIRL concept.

FOIRL supports point-to-point links up to 1000 meters in length allowing longer distances to be spanned than with a coaxial or twisted pair link. As defined in the standard, FOIRL is restricted to links between two repeaters. But vendors have adapted the technology to also support long distance links between an computer and a repeater. The standard also defined the use of "SMA" fiber connector technology, but the more popular "ST" fiber connector is often used with FOIRL.

The newer 10Base-FL standard supports interoperability with the older FOIRL technology. A 10Base-FL transceiver may be used at one end of a fiber link while an FOIRL transceiver is used at the other end. However, the maximum segment length is limited to the 1000 meters length specified by FOIRL, and not the 2000 meter length supported by 10Base-FL

4.2.6 10Base-F

The 10Base-F standard defines 10 Mb/s operation over fiber optic media. It was released to enhance the prior Fiber Optic Inter-Repeater Link (FOIRL) standard. The identifier "10Base-F" refers collectively to three fiber optic segment types described in the following sections: 10Base-FL, 10Base-FB, and 10Base-FP. The three 10Base-F implementations are not compatible with each other at the fiber interface.

4.2.7 10Base-FL

10Base-FL ("fiber link") supports a 10 Mb/s transmission rate over two fiber optic cables. The 10Base-FL standard updates and expands the prior Fiber Optic Inter-Repeater Link (FOIRL) standard. 10Base-FL supports a maximum segment length of 2000 meters compared with 1000 meters supported by FOIRL.

10Base-FL may be used to connect two computers, two repeaters, or or a computer and a repeater port. All 10Base-FL segments are point-to-point with one transceiver on each end of the segment. A computer typically attaches through an external 10Base-FL transceiver. The network interface card (NIC) in the computer attaches to the external transceiver through an AUI cable. The transceiver attaches to the two fiber optic cables through connectors that are commonly known as "ST" connectors, but officially called "BFOC/2.5" connectors in the standard. One fiber optic cable is used to transmit data, and the other is used to receive data.

The fiber optic cable typically used with 10Base-FL is multi-mode fiber (MMF) known as "62.5/125". This designation indicates the fiber optic core of the cable is 62.5 microns in diameter, and the outer cladding is 125 microns in diameter. Other types of multi-mode fiber optic cable such as 50/125, 85/125, and 100/140 may be used in 10Base-FL links, but they may not achieve the same distance as 62.5/125. The wavelength of light used with 10Base-FL is 850 nanometers.

The independent transmit and receive paths of the 10Base-FL media allow the full-duplex mode of operation to be optionally supported. When operating in full-duplex mode, 10Base-FL can support segment lengths longer than 2000 meters. In full-duplex mode, segment lengths are no longer restricted by the round trip timing requirements of a CSMA/CD collision domain. High quality multi-mode fiber and transceivers can support segment lengths of 5 km. Even longer distances can be supported with the more expensive single mode fiber (SMF).

10Base-FL is ideal for connecting between buildings. In addition to supporting longer segment lengths, fiber optic cables are immune to electrical hazards such as lightning strikes and ground currents that can occur when connecting separate buildings. Fiber is also immune to electrical noise that can be generated by motors or other electrical equipment.

10Base-FL Facts

Transmission Rate

10 Mb/s (20 Mb/s in optional full-duplex mode)

Cable Type

two multi-mode fiber optic cables (MMF),
typically 62.5/125 fiber,
(62.5 micron fiber core with 125 micron outer cladding)
850 nanometer light wavelength

Maximum Segment Length

2000 meters (6561 feet)

Maximum Number of Transceivers per Segment

2

Connecter Technology

ST connector (also known as BFOC/2.5)

Signal Encoding

Manchester encoding

4.2.8 10Base-FB

10Base-FB ("fiber backbone") supports a 10 Mb/s transmission rate over a special synchronous signaling link that is optimized for interconnecting repeaters. The synchronous signaling protocol allows the number of repeaters that can be used in a 10 Mb/s Ethernet system to be extended. Individual 10Base-FB segments may be up to 2000 meters in length.

There are two factors that limit the number of repeaters in the path between two stations: 1) repeaters add signal delay that can cause the maximum time for collisions to propagate throughout the network to exceed the required 512 bit time limit, and 2) repeaters introduces a somewhat random bit loss in the preamble that can result in "shrinkage" of the interframe gap below the required 10 Mb/s limit of 9.6 microseconds. 10Base-FB increases the number of repeaters allowed in the network by reducing the amount of interframe gap shrinkage.

All frames are initially transmitted with a 56-bit preamble and 8-bit start of frame delimiter. When the frame is received by a repeater, there is a variability in the amount of time it takes the repeater's electronic circuitry to recognize that a new frame is being transmitted. To the repeater it appears that bits of the preamble have been

lost. Successive frames may experience different levels of bit loss. Repeaters are required to regenerate the lost preamble bits as each frame is re-transmitted. If one frame experiences more bit loss than the next frame, the interframe gap between the two frames will shrink.

Some interframe gap shrinkage is expected and allowed by the standard. However if successive frames pass through too many repeaters, the interframe gap may shrink to the point that the receiving end looses one or both frames. Hence the number of repeaters allowed in the path between any two stations is restricted.

10Base-FB reduces the amount of interframe gap shrinkage by synchronizing the transmission between two repeaters. The interframe gap at the output of a normal repeater may shrink by as many as 8 bits. With 10Base-FB repeaters the variability of the shrinkage is reduced by a factor of four to only 2 bits. This simplifies network design as the time required for collisions to propagate throughout the network becomes the only practical limit on the size of the network.

�10Base-FB repeaters are synchronized through a 2.5 MHz "Idle" signal that is transmitted over the link when packets are not present. This allows a receiver to be continuously locked onto the transmit signal so no bits are

lost at the beginning of a packet. Since no bits are lost, there is no need to regenerate the preamble, and interframe gap shrinkage is minimized.

10Base-FB is restricted to use as a point-to-point link between repeaters. The repeaters on both ends of the link must be specifically designed to support 10Base-FB. 10Base-FB cannot be used to connect a computer directly to a repeater. 10Base-FB supports the same cable and connector types as 10Base-FL. However a 10Base-FB port on one repeater cannot be directly connected to a 10Base-FL port on another repeater as the signaling protocols are not compatible. 10Base-FB is also not capable of supporting the full-duplex mode of operation.

4.2.9 10Base-FP

10Base-FP ("fiber passive") supports a 10 Mb/s transmission rate over a "fiber optic passive star" system. 10Base-FP segments may be up to 500 meters in length, and a single 10Base-FP "Star" may link up to 33 computers.

The 10Base-FP Star is passive device which implies it requires no power. It is ideal for use in locations where no active power supply is available. The Star acts as a passive hub that receives optical signals from special 10Base-FP transceivers (or MAUs) and passively distributes the signal uniformly to all the other 10Base-FP transceivers connected to the Star, including the one from which the transmission originated. A 10Base-FP Star is comprised of a passive-star coupler and fiber optic connectors packaged in a mechanical enclosure.

10Base-FP is not capable of supporting the full-duplex mode of operation. Use of 10Base-FP has not been widely adopted at this time.

4.3 100 Mb/s Physical Layers

4.3.1 100Base-T

The identifier "100Base-T" refers collectively to the entire set of specifications and media standards for 100 Mb/s Ethernet, or "Fast Ethernet". Four 100 Mb/s media standards have been defined: 100Base-TX, 100Base-FX, 100Base-T4, and 100Base-T2. Each of these standards are described in the following sections.

All 100Base-T standards share a common "Media Access Control" (MAC) specification, but each has its own unique "Physical Layer" (PHY), or transceiver, specification. 100 Mb/s transceivers may be integrated directly into a network device such as a repeater or network interface card (NIC), or located external to the device. If located externally, the transceiver is attached to the repeater or NIC through a 40-pin "Media Independent.

Interface" (MII) connector. The transceiver may be plugged directly into the MII connector, or be attached through a MII cable that is analogous to the AUI cable defined as part of the 10 Mb/s standard. If present, the MII cable may be a maximum of 0.5 meters in length.

The MII supports Ethernet operation at either 10 Mb/s or 100 Mb/s. Many Fast Ethernet transceivers (PHYs) include the necessary electronics that allow them to support operation at either speed. A device configures itself for operation at the proper speed through a protocol known as "Auto-Negotiation".

4.3.2 100Base-X

The identifier "100Base-X" refers collectively to the 100Base-TX and 100Base-FX standards described in the following sections. Both 100Base-TX and 100Base-FX share a common signaling specification, called "4B/5B", that originated with the ANSI X3T9.5 standard for Fiber Distributed Data Interface (FDDI). An existing signaling specification was adopted to help speed 100Base-X products to market.

With 4B/5B signaling, every 4-bits of user data are converted into a 5-bit code prior to transmission over the media. The overhead associated with the extra bit requires that a signal transmission rate of 125 megabaud be used to transfer a net 100 Mb/s of user data. However, the extra bit allows 5-bit "symbols" to be defined that transfer control information in addition to user data. The 5-bit symbols are also defined in a manner that ensures there will be periodic transitions in the signal to allow the receiver to maintain synchronization with the incoming data stream.

4.3.3 100Base-TX

100Base-TX supports a 100 Mb/s transmission rate over two pairs twisted pair cabling. It uses one pair of wires for transmitting data, and the other pair for receiving data. The two pairs of wires are bundled into a single cable that may often include two additional pairs of wires. If present, the two additional pairs of wires must remain unused since 100Base-TX is not designed to tolerate the "cross talk" that can occur when the cable is shared with other signals. Each end of the cable is terminated with an 8 position RJ-45 connector, or "jack".

100Base-TX supports transmission over up to 100 meters of 100 ohm Category 5 unshielded twisted pair (UTP) cabling. Category 5 cabling is a "higher grade" wiring than the Category 3 cabling used with 10Base-T. It is rated for transmission at frequencies up to 100 MHz. Category 3 cabling supports transmission only up to 16 MHz. 100Base-TX transmits data using the "4B/5B" signal encoding scheme that originated with the ANSI X3T9.5 standard for Fiber Distributed Data Interface (FDDI). Note that use of the 4B/5B encoding scheme requires a signal transmission rate of 125 megabaud to transfer a net 100 Mb/s of data. But 125 megabaud equates to a maximum frequency of 62.5 MHz, which is within the maximum 100 MHz frequency supported by Category 5 cabling.

All 100Base-TX segments are point-to-point with one transceiver (PHY) at each end of the cable. Most 100Base-TX connections link a computer station to a repeating hub. 100Base-TX repeating hubs typically have the transceiver (PHY) function integrated internally so the Category 5 cable plugs directly into an RJ-45 connector on the hub. Computer stations attach through a network interface card (NIC). The transceiver function may be integrated into the NIC allowing the Category 5 twisted pair cable to be plugged directly into an RJ-45 connector on the NIC. Or the cable may plug into an external 100Base-TX transceiver that attaches to the NIC through a 40-pin Media Independent Interface (MII) connector.

Two 100Base-TX NICs may also be directly attached to each other without a 100Base-TX repeating hub. In this case a special "crossover cable" is required that attaches the transmit pair of one station to the receive pair of the other station, and vice versa. When attaching a NIC to a repeating hub, a normal "straight through" cable is used and the cross over function is performed inside the repeating hub.

The 100Base-TX standard supports the option of using 150 ohm shielded twisted pair (STP) cabling. STP cabling is found in buildings wired to support the 802.5 Token Ring standard. When using STP cabling a 9-pin "D-shell" connector replaces the RJ-45 connector used with UTP cabling.

The independent transmit and receive paths of the 100Base-TX media allow the full-duplex mode of operation to be optionally supported. To support full-duplex mode, both the NIC and the hub must be capable of, and be configured for, full-duplex operation.

100Base-TX Facts

Transmission Rate

100 Mb/s (200 Mb/s in optional full-duplex mode)

Cable Type

two pairs of Category 5 unshielded twisted pair (UTP) cabling,
100-ohm impedance rating,
(Optionally supports 150 ohm shielded twisted pair (STP) cabling)

Maximum Segment Length

100 meters (328 feet)

Maximum Number of Transceivers per Segment

2

Connecter Technology

RJ-45 style modular jack (8-pins) for UTP cabling
(Optionally supports 9-pin D-type connector for STP cabling)

Signal Encoding

4B/5B

4.3.4 100Base-FX

100Base-FX supports a 100 Mb/s transmission rate over two fiber optic cables. It allows maximum segment lengths of 412 meters for half-duplex links, and 2000 meters or more for full-duplex links. 100Base-FX is essentially a "fiber" version of the 100Base-TX standard. The twisted pair cabling and connectors used in 100Base-TX components are replaced with fiber optic cabling and connectors in 100Base-FX components. Both standards use the same 4B/5B signal encoding scheme.

The fiber optic cable typically used with 100Base-FX is multi-mode fiber (MMF) known as "62.5/125". This designation indicates the fiber optic core of the cable is 62.5 microns in diameter, and the outer cladding is 125 microns in diameter. Other types of multi-mode fiber optic cable such as 50/125, 85/125, and 100/140 may be used in 100Base-FX links, but they may not achieve the same distance as 62.5/125. The wavelength of light used with 100Base-FX is 1300 nanometers.

The 100Base-FX standard allows several types of fiber optic connectors to be used. Duplex "SC" connectors are recommended, but "ST" and FDDI "MIC" connectors are also permitted. Two fiber optic cables are used in each 100Base-FX segment. One cable is used for transmit data, and the other is used for receive data.

All 100Base-FX segments are point-to-point with one transceiver (PHY) at each end of the link. Use of 100Base-FX requires unique transceiver (PHY) hardware. 100Base-FX repeating hubs typically have built-in fiber optic connectors and transceivers. Network Interface Cards (NICs) may have integrated 100Base-FX connectors and transceiver, or a 100Base-FX transceiver may be attached externally through a 40-pin Media Independent Interface (MII) connector.

The independent transmit and receive paths of the 100Base-FX media allow the full-duplex mode of operation to be optionally supported. When operating in full-duplex mode, 100Base-FL segment lengths can be increased from 412 meters to 2000 meters. Even longer distances can be supported with the more expensive single mode fiber (SMF). In full-duplex mode, segment lengths are no longer restricted by the round trip timing requirements of a CSMA/CD collision domain.

100Base-FX Facts

Transmission Rate

100 Mb/s (200 Mb/s in optional full-duplex mode)

Cable Type

two multi-mode optical fibers (MMF),
typically 62.5/125 multi-mode fiber,
1300 nanometer light wavelength

Maximum Segment Length

Half-Duplex: 412 meters (1351 feet)
Full-Duplex: 2000 meters (6561 feet)

Maximum Number of Transceivers per Segment

2

Connecter Technology

duplex SC connector preferred,
ST connector and FDDI MIC connector also permitted

Signal Encoding

4B/5B

4.3.5 100Base-T4

100Base-T4 supports a 100 Mb/s transmission rate over four pairs of Category 3 or better twisted pair cabling. It allows 100 Mb/s Ethernet to be carried over inexpensive Category 3 cabling as opposed to the Category 5 cabling required by 100Base-TX.

Of the four pairs of wire used by 100Base-T4, one pair is dedicated to transmit data, one pair is dedicated to receive data, and two bidirectional pairs are used to either transmit or receive data. This scheme ensures that one dedicated pair is always available to allow collisions to be detected on the link, while the three remaining pairs are available to carry the data transfer.

Data is transmitted over 100Base-T4 using an "8B6T" signal encoding scheme in which 8 bits of binary data are converted into 6 "ternary" signals for transmission over the twisted pair wires. A ternary signal can have one of three values: -1, 0, and +1. This is opposed to the binary signaling method used in other physical layers such as 100Base-TX that can have only two values: 0 and 1. This scheme effectively splits the 100 Mb/s data rate over three twisted pairs that each carry 33.333... Mb/s. Since the ternary signaling requires only six bauds to transfer eight bits of information, the maximum signal transmission rate on each of the twisted pairs is 25 megabaud. This equates to a maximum frequency of 12.5 MHz, which is within the 16 MHz limit supported by Category 3 cabling.

All 100Base-T4 segments are point-to-point with one transceiver (PHY) at each end of the cable. Each end of the cable is terminated with an 8 position RJ-45 connector, or "jack". Use of 100Base-T4 requires unique transceiver (PHY) hardware. 100Base-T4 repeating hubs typically have built-in transceivers. Network Interface Cards (NICs) may have an integrated 100Base-T4 transceiver, or a 100Base-T4 transceiver may be attached externally through a 40-pin Media Independent Interface (MII) connector.

100Base-T4 does not support the full-duplex mode of operation since it cannot support simultaneous transmit and receive at 100 Mb/s.

100Base-T4 Facts

Transmission Rate

100 Mb/s (full-duplex not supported)

Cable Type

four pairs of Category 3 or better unshielded twisted pair (UTP) cabling,
100-ohm impedance rating

Maximum Segment Length

100 meters (328 feet)

Maximum Number of Transceivers per Segment

2

Connecter Technology

RJ-45 style modular jack (8-pins)

Signal Encoding

8B6T

4.3.6 100Base-T2

100Base-T2 is the only Ethernet standard that supports a 100 Mb/s transmission rate over two pairs of Category 3 twisted pair cabling. If the cable has more than two twisted pairs, it also permits the additional pairs to carry other services such as digital phone, 10Base-T, or more 100Base-T2 connections.

100Base-T2 employs a "dual duplex baseband transmission" scheme to transmit data over each wire pair in each direction simultaneously. It uses a complex signal encoding scheme called "Five-level Pulse Amplitude Modulation", or PAM5x5, that transmits data using a "quinary" (five level) signal that can have the following values: -2, -1, 0, +1, or +2. It allows four bits of information to be transmitted per signal transition on each wire pair. With a 25 megabaud transition rate, and two pairs of wire, it can support transmission of 100 Mb/s of data in each direction simultaneously (full-duplex).

The 100Base-T2 standard was approved in March 1997, and is not widely used at this time.

100Base-T2 Facts

Transmission Rate

100 Mb/s (200 Mb/s in optional full-duplex mode)

Cable Type

two pairs of Category 3 unshielded twisted pair (UTP) cabling,
100-ohm impedance rating

Maximum Segment Length

100 meters (328 feet)

Maximum Number of Transceivers per Segment

2

Connecter Technology

RJ-45 style modular jack (8-pins)

Signal Encoding

PAM5x5

4.4 1000 Mb/s Physical Layers

4.4.1 1000Base-X

The identifier "1000Base-X" refers collectively to the 1000Base-LX, 1000Base-SX, and 1000Base-CX "Gigabit Ethernet" standards described in the following sections. Each of these standards are based on physical layer specifications adopted from the ANSI X3.230-1994 standard for Fibre Channel. In particular, 1000Base-X uses the same "8B/10B" coding scheme as Fibre Channel, and similar optical and electrical specifications. The adoption of the existing Fibre Channel physical layer specifications helped speed 1000Base-X products to market. Note that 1000Base-T, which is an additional Gigabit Ethernet standard currently being defined, will not use the Fibre Channel physical layer specifications and is not part of the 1000Base-X family of standards.

With 8B/10B signaling, every 8-bits of user data are converted into a 10-bit symbol prior to transmission over the media. The overhead associated with the extra bits requires that a signal transmission rate of 1.25 gigabaud be used to transfer a net 1 Gb/s of user data. However, the extra bits permit a unique symbol to be assigned for each valid 8-bit data combination, while allowing additional symbols to be defined to transfer control and other information. Control symbols are used to signal conditions such as start of packet, end of packet, and idle. Many symbols are invalid, and if received are an indication that a transmission error has occurred. All valid symbols are defined to include five '1's and five '0's to allow the signal transmission to be "DC balanced". This also permits the receiver to easily perform symbol alignment, and ensures the incoming bit stream has frequent transitions for performing clock recovery.

The 1000Base-X standard defines a Gigabit Media Independent Interface (GMII) that attaches the Media Access Control (MAC) and Physical Layer (PHY) functions of a Gigabit Ethernet device. GMII is analogous to the Attachment Unit Interface (AUI) in 10 Mb/s Ethernet, and the Media Independent Interface (MII) in 100 Mb/s Ethernet. However, unlike AUI and MII, no connector is defined for GMII to allow a transceiver (PHY) to be attached externally via a cable. The transceiver function is built into all Gigabit Ethernet devices, and the GMII exists only as an internal component interface. It is not practical to expose the GMII as an external interface due to the high frequency (125 MHz) of its parallel 8-bit data transfers.

4.4.2 1000Base-LX

The "L" in 1000Base-LX stands for "long" as it uses long wavelength lasers to transmit data over fiber optic cable. The long wavelength lasers specified by the standard operate in the wavelength range of 1270 to 1355 nanometers. Both single mode and multi-mode optical fibers are supported. Long wavelength lasers are more expensive than short wavelength, but have the advantage of being able to drive longer distances.

1000Base-LX Facts

Transmission Rate

1000 Mb/s (2000 Mb/s in optional full-duplex mode)

Cable Types

two 62.5/125 or 50/125 multi-mode optical fibers (MMF), or
two 10 micron single mode optical fibers (SMF),
1270 to 1355 nanometer light wavelength

Maximum Segment Length

Half-Duplex MMF & SMF: 316 meters (1036 ft)
Full-Duplex MMF: 550 meters (1804 ft)
Full-Duplex SMF: 5000 meters (16,404 ft)

Maximum Number of Transceivers per Segment

2

Connecter Technology

duplex SC connector

Signal Encoding

8B/10B

4.4.3 1000Base-SX

The "S" in 1000Base-SX stands for "short" as it uses short wavelength lasers to transmit data over fiber optic cable. The short wavelength lasers specified by the standard operate in the wavelength range of 770 to 860 nanometers. Only multi-mode optical fiber is supported. Short wavelength lasers have the advantage of being less expensive than long wavelength lasers.

1000Base-SX Facts

Transmission Rate

1000 Mb/s (2000 Mb/s in optional full-duplex mode)

Cable Types

two 62.5/125 or 50/125 multi-mode optical fibers (MMF),
770 to 860 nanometer light wavelength

Maximum Segment Length

Half-Duplex 62.5/125: 275 meters (902 ft)
Half-Duplex 50/125: 316 meters (1036 ft)
Full-Duplex 62.5/125: 275 meters (902 ft)
Full-Duplex 50/125: 550 meters (1804 ft)

Maximum Number of Transceivers per Segment

2

Connecter Technology

duplex SC connector

Signal Encoding

8B/10B

4.4.4 1000Base-CX

The "C" in 1000Base-CX stands for "copper" as it uses specially shielded balanced copper jumper cables also called "twinax" or "short haul copper". Segment lengths are limited to only 25 meters which restricts 1000Base-CX to connecting equipment in small areas like wiring closets.

1000Base-SX Facts

Transmission Rate

1000 Mb/s (2000 Mb/s in optional full-duplex mode)

Go to Home Page

Go to Section 2

Go to Proposal Section 3

Go to Proposal Appendix A

You are on the Modern Graphics Proposal Section Appendix B

Go to Proposal Appendix C